Affiliation:
1. Department of Pure Mathematics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
Abstract
We re-examine some critical values of symmetric square L-functions for cusp forms of level one. We construct some more of the elements of large prime order in Shafarevich–Tate groups, demanded by the Bloch–Kato conjecture. For this, we use the Galois interpretation of Kurokawa-style congruences between vector-valued Siegel modular forms of genus two (cusp forms and Klingen–Eisenstein series), making further use of a construction due to Urban. We must assume that certain 4-dimensional Galois representations are symplectic. Our calculations with Fourier expansions use the Eholzer–Ibukiyama generalization of the Rankin–Cohen brackets. We also construct some elements of global torsion which should, according to the Bloch–Kato conjecture, contribute a factor to the denominator of the rightmost critical value of the standard L-function of the Siegel cusp form. Then we prove, under certain conditions, that the factor does occur.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献