On small fractional parts of perturbed polynomials

Author:

Minelli Paolo1ORCID

Affiliation:

1. Institute of Analysis and Number Theory, Graz University of Technology, Kopernikusgasse 24/II, 8010 Graz, Austria

Abstract

Questions concerning small fractional parts of polynomials and pseudo-polynomials have a long history in analytic number theory. In this paper, we improve on the earlier work by Madritsch and Tichy. In particular, let [Formula: see text] where P is a polynomial of degree k and [Formula: see text] is a linear combination of functions of shape [Formula: see text], [Formula: see text], [Formula: see text]. We prove that for any given irrational [Formula: see text] we have [Formula: see text] for P belonging to a certain class of polynomials and with [Formula: see text] being an explicitly given rational function in k.

Funder

Austrian Science Fund

Publisher

World Scientific Pub Co Pte Ltd

Subject

Algebra and Number Theory

Reference14 articles.

1. Weyl Sums and Diophantine Approximation

2. R. C. Baker , Diophantine Inequalities, London Mathematical Society Monographs New Series, Vol. 1 (Clarendon Press, Oxford, 1986), p. 275.

3. Small fractional parts of polynomials

4. FRACTIONAL PARTS OF POLYNOMIALS OVER THE PRIMES

5. FRACTIONAL PARTS OF POLYNOMIALS OVER THE PRIMES. II

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3