RÉPARTITION GALOISIENNE D'UNE CLASSE D'ISOGÉNIE DE COURBES ELLIPTIQUES

Author:

RICHARD RODOLPHE1

Affiliation:

1. IRMAR, Université de Rennes 1, Bâtiment 22–23, Campus de Beaulieu, 35000 Rennes, France

Abstract

Dans cet article, on montre que les orbites sous Galois des invariants modulaires associés à des courbes elliptiques complexes sans multiplication complexe variant dans une même classe d'isogénie s'équidistribuent dans la courbe modulaire vers la probabilité hyperbolique. La démonstration repose sur des arguments de théorie ergodique, notamment le théorème de Ratner (cf. [A. Eskin et H. Oh, Ergodic theoretic proof of equidistribution of Hecke points, Ergodic Theory Dynam. Systems26(1) (2006) 163–167]), ainsi que sur le théorème de l'image ouverte de Serre [J.-P. Serre, Abelian l-Adic Representations and Elliptic Curves (W. A. Benjamin, New York, 1968); Propriétés Galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math.15(4) (1972) 259–331] dans le cas où les invariants modulaires considérés sont algébriques sur Q, et des résultats de G. Shimura dans le cas transcendant [Introduction to the Arithmetic Theory of Automorphic Functions, Publications of the Mathematical Society of Japan (Princeton University Press, Princeton, NJ, 1994)]. In this article, it is shown that Galois orbits of invariants associated with non-CM and pairwise isogeneous complex elliptic curves equidistribute in the classical modular curve towards the hyperbolic probability measure. The proof is based on arguments from ergodic theory, especially Ratner's theorem on unipotent flows (cf. [A. Eskin and H. Oh, Ergodic theoretic proof of equidistribution of Hecke points, Ergodic Theory Dynam. Systems26(1) (2006) 163–167]), as well as on Serre's open image theorem [J.-P. Serre, Abelian l-Adic Representations and Elliptic Curves (W. A. Benjamin, New York, 1968); Propriétés Galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math.15(4) (1972) 259–331] in case of algebraic invariants, and on G. Shimura's work in the transcendant case [Introduction to the Arithmetic Theory of Automorphic Functions, Publications of the Mathematical Society of Japan (Princeton University Press, Princeton, NJ, 1994)].

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the generalised André–Pink–Zannier conjecture.;Comptes Rendus. Mathématique;2023-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3