Affiliation:
1. Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania
Abstract
Let [Formula: see text] be an unbounded sequence of integers satisfying a linear recurrence relation with integer coefficients. We show that for any [Formula: see text] there exist infinitely many [Formula: see text] for which [Formula: see text] consecutive integers [Formula: see text] are all divisible by certain primes. Moreover, if the sequence of integers [Formula: see text] satisfying a linear recurrence relation is unbounded and non-degenerate then for some constant [Formula: see text] the intervals [Formula: see text] do not contain prime numbers for infinitely many [Formula: see text]. Applying this argument to sequences of integer parts of powers of Pisot and Salem numbers [Formula: see text] we derive a similar result for those sequences as well which implies, for instance, that the shifted integer parts [Formula: see text], where [Formula: see text] and [Formula: see text] runs through some infinite arithmetic progression of positive integers, are all composite.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献