Affiliation:
1. Department of Mathematics, Penn State Abington, Abington, Pennsylvania 19001, USA
Abstract
In this paper, we study solutions to [Formula: see text], where [Formula: see text] are Hecke newforms with respect to [Formula: see text] of weight [Formula: see text] and [Formula: see text]. We show that the number of solutions is finite for all [Formula: see text]. Assuming Maeda’s conjecture, we prove that the Petersson inner product [Formula: see text] is nonzero, where [Formula: see text] and [Formula: see text] are any nonzero cusp eigenforms for [Formula: see text] of weight [Formula: see text] and [Formula: see text], respectively. As a corollary, we obtain that, assuming Maeda’s conjecture, identities between cusp eigenforms for [Formula: see text] of the form [Formula: see text] all are forced by dimension considerations. We also give a proof using polynomial identities between eigenforms that the [Formula: see text]-function is algebraic on zeros of Eisenstein series of weight [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory