ZERO ORDER ESTIMATES FOR ANALYTIC FUNCTIONS

Author:

ZORIN EVGENIY12

Affiliation:

1. Department of Mathematics, University of York, York YO10 5DD, UK

2. Institut de mathématiques de Jussieu, Université Paris 7, Paris, France

Abstract

In this article we develop an important tool in transcendental number theory. More precisely, we study multiplicity estimates (or multiplicity lemmas) for analytic functions. Our main theorem reduces multiplicity estimates at zero to the study of ideals in polynomial ring stable under an appropriate map. In particular, in the case of algebraic morphisms this result gives a new link between the theory of polarized algebraic dynamical systems and transcendental number theory. Specialized to the case of differential operators this theorem improves Nesterenko's conditional result on solutions of systems of differential equations. We also deduce an analog of Nesterenko's theorem for Mahler's functions and for solutions of q-difference equations. Further, analyzing stable ideals we prove the unconditional optimal result in the case of linear functional systems of generalized Mahler's type. The latter result generalizes a famous theorem of Nishioka (1986) previously conjectured by Mahler (1969). This new multiplicity estimate allows to prove new results on algebraic independence and on measures of algebraic independence, as done in Zorin (2010 and 2011).

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Reference39 articles.

1. On Siegel–Shidlovskii's theory for q-difference equations

2. An analogue of Shidlovskii‚s lemma for certain q-difference equations

3. D. Bertrand, Diophantine Geometry: Proceedings, CRM Series 4, ed. U. Zannier (Edizioni della Normale, 2007) pp. 65–71.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiplicity estimates for algebraically dependent analytic functions;Proceedings of the London Mathematical Society;2013-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3