Affiliation:
1. Department of Mathematics, University of Turin, Via Carlo Alberto 10, 10123 Turin, Italy
Abstract
In this paper, we provide a periodic representation (by means of periodic rational or integer sequences) for any cubic irrationality. In particular, for a root α of a cubic polynomial with rational coefficients, we study the Cerruti polynomials [Formula: see text], and [Formula: see text], which are defined via [Formula: see text] Using these polynomials, we show how any cubic irrational can be written periodically as a ternary continued fraction. A periodic multidimensional continued fraction (with pre-period of length 2 and period of length 3) is proved convergent to a given cubic irrationality, by using the algebraic properties of cubic irrationalities and linear recurrent sequences.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献