Affiliation:
1. School of Teacher Education, Hubei Minzu University, 39 Xueyuan Road, Enshi 445000, Hubei Province, P. R. China
Abstract
Let [Formula: see text] and [Formula: see text] be positive integers and let [Formula: see text] be a set of [Formula: see text] distinct positive integers. For [Formula: see text], one defines [Formula: see text]. We denote by [Formula: see text] (respectively, [Formula: see text]) the [Formula: see text] matrix having the [Formula: see text]th power of the greatest common divisor (respectively, the least common multiple) of [Formula: see text] and [Formula: see text] as its [Formula: see text]-entry. In this paper, we show that for arbitrary positive integers [Formula: see text] and [Formula: see text] with [Formula: see text], the [Formula: see text]th power matrices [Formula: see text] and [Formula: see text] are both divisible by the [Formula: see text]th power matrix [Formula: see text] if [Formula: see text] is a gcd-closed set (i.e. [Formula: see text] for all integers [Formula: see text] and [Formula: see text] with [Formula: see text]) such that [Formula: see text]. This confirms two conjectures of Shaofang Hong proposed in 2008.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Algebra and Number Theory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献