Explicit evaluation of triple convolution sums of the divisor functions

Author:

Ramakrishnan B.1ORCID,Sahu Brundaban2ORCID,Singh Anup Kumar2ORCID

Affiliation:

1. North-East Centre, Indian Statistical Institute, Punioni, Solmara, Tezpur 784 501, Assam, India

2. School of Mathematical Sciences, National Institute of Science Education and Research, Bhubaneswar, An OCC of Homi Bhabha National Institute, Jatni, Khurda Odisha – 752 050, India

Abstract

In this paper, we use the theory of modular forms and give a general method to obtain the convolution sums [Formula: see text] for odd integers [Formula: see text] and [Formula: see text], where [Formula: see text] is the sum of the [Formula: see text]th powers of the positive divisors of [Formula: see text]. We consider four cases, namely (i) [Formula: see text], (ii) [Formula: see text]; [Formula: see text] (iii) [Formula: see text]; [Formula: see text] and (iv) [Formula: see text], and give explicit expressions for the respective convolution sums. We provide several examples of these convolution sums in each case and further use these formulas to obtain explicit formulas for the number of representations of a positive integer [Formula: see text] by certain positive definite quadratic forms. The existing formulas for [Formula: see text] (in [20]), [Formula: see text] (in [7]), [Formula: see text] (in [35]), [Formula: see text], [Formula: see text] (in [30]) and [Formula: see text] (in [31]), which were all obtained by using the theory of quasimodular forms, follow from our method.

Funder

Science and Engineering Research Board

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3