HENSLEY'S PROBLEM FOR FUNCTION FIELDS

Author:

WANG JULIE TZU-YUEH1

Affiliation:

1. Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan

Abstract

Büchi's square problem asks if there exists a positive integer M such that all x1, …, xM ∈ ℤ satisfying the equations [Formula: see text] for all 3 ≤ r ≤ M must also satisfy [Formula: see text] for some integer x and for all 1 ≤ r ≤ M. Hensley's problem asks if there exists a positive integer M such that, for any integers ν and a, if (ν + r)2 - a is a square for all 1 ≤ r ≤ M, then a = 0. It is not difficult to see that a positive answer to Hensley's problem implies a positive answer to Büchi's square problem. One can ask a more general version of Hensley's problem by replacing the square power by an nth power for any integer n ≥ 2 which is called Hensley's problem for nth powers. In this paper, we will study Hensley's problem for nth powers over function fields of any characteristic.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Reference13 articles.

1. Hensleyʼs problem for complex and non-Archimedean meromorphic functions

2. Vanishing sums in function fields

3. Algebraic Geometry

4. L. Lipshitz, The Collected Works of J. Richard Büchi, eds. S. MacLane and D. Siefkes (Springer, 1990) pp. 677–680.

5. Diophantine Equations over Function Fields

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extensions of Buchi's Higher Powers Problem to Positive Characteristic;International Mathematics Research Notices;2014-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3