Sur la structure galoisienne relative de puissances de la différente et idéaux de stickelberger

Author:

Sodaïgui Bouchaïb1

Affiliation:

1. Université Polytechnique Hauts-de-France, Laboratoire de Mathématiques LMI, FR CNRS 2037, Le Mont Houy, 59313 Valenciennes Cedex 9, France

Abstract

Let [Formula: see text] be a number field, [Formula: see text] its ring of integers, [Formula: see text] its classgroup and [Formula: see text] the class number of [Formula: see text]. Let [Formula: see text] be a finite group. Let [Formula: see text] be a maximal [Formula: see text]-order in the semi-simple algebra [Formula: see text] containing [Formula: see text], and [Formula: see text] its locally free classgroup. Let [Formula: see text] and [Formula: see text]. We define the set [Formula: see text] of Galois module classes realizable by the [Formula: see text]th power of the different to be the set of classes [Formula: see text] such that there exists a Galois extension [Formula: see text] with Galois group isomorphic to [Formula: see text] ([Formula: see text]-extension), which is tamely ramified, and for which the class of [Formula: see text] is equal to [Formula: see text], where we clarify that if [Formula: see text], where [Formula: see text], [Formula: see text] is the [Formula: see text]th root of the inverse different [Formula: see text] (respectively, the different [Formula: see text]) if [Formula: see text] (respectively, [Formula: see text]) when it exists. Let [Formula: see text] be a prime number and [Formula: see text] be a primitive [Formula: see text]th root of unity. In this article, we suppose that [Formula: see text] is cyclic of order [Formula: see text] and [Formula: see text] and [Formula: see text] are linearly disjoint. We prove, sometimes under an assumption on [Formula: see text], that [Formula: see text] is a subgroup of [Formula: see text], by an explicit description using a Stickelberger ideal. In addition, for each [Formula: see text], we determine the set of the Steinitz classes of [Formula: see text], [Formula: see text] runs through the tame [Formula: see text]-extensions of [Formula: see text], and prove that it is a subgroup of [Formula: see text], also sometimes under an hypothesis on [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3