An upper bound for least solutions of the exponential Diophantine equation D1x2 - D2y2 = λkz

Author:

Yang Hai12,Fu Ruiqin23

Affiliation:

1. College of Science, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China

2. College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China

3. College of Science, Xi'an Shiyou University, Xi'an, Shaanxi 710065, P. R. China

Abstract

Let D1, D2, D, k, λ be fixed integers such that D1 ≥ 1, D2 ≥ 1, gcd (D1, D2) = 1, D = D1D2 is not a square, ∣k∣ > 1, gcd (D, k) = 1 and λ = 1 or 4 according as 2 ∤ k or not. In this paper, we prove that every solution class S(l) of the equation D1x2-D2y2 = λkz, gcd (x, y) = 1, z > 0, has a unique positive integer solution [Formula: see text] satisfying [Formula: see text] and [Formula: see text], where z runs over all integer solutions (x,y,z) of S(l),(u1,v1) is the fundamental solution of Pell's equation u2 - Dv2 = 1. This result corrects and improves some previous results given by M. H. Le.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An elementary approach to the generalized Ramanujan–Nagell equation;Indian Journal of Pure and Applied Mathematics;2023-01-13

2. Some exponential diophantine equations II: The equationx2Dy2=kzfor evenk;Mathematica Slovaca;2022-03-28

3. A note on the Diophantine equation $$\varvec{x^2=4p^n-4p^m+\ell ^2}$$;Indian Journal of Pure and Applied Mathematics;2021-11-11

4. A note on the Goormaghtigh equation;Periodica Mathematica Hungarica;2018-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3