Enhancement of third-order nonlinear optical properties of HMTA stabilized pure and doped ZnS nanoparticles and their electronic structures

Author:

Anand K. Vijai1,Vinitha G.2,Gautam Sanjeev3,Chae K. H.4,Mohan R.5,Asokan K.6,Ravindran T. R.7,Jayavel R.8

Affiliation:

1. Department of Physics, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India

2. Division of Physics, School of Advanced Sciences, VIT University, Chennai 600127, Tamil Nadu, India

3. Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh 160014, India

4. Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea

5. Department of Physics, Presidency College, Chennai 600005, Tamil Nadu, India

6. Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India

7. Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India

8. Centre for Nanoscience and Technology, Anna University, Chennai 600025, Tamil Nadu, India

Abstract

This study reports the third-order nonlinear optical (NLO) properties of hexamethylenetetramine (HMTA) stabilized pure and transition metals (Cu, Co and Mn) doped ZnS nanoparticles (NPs) and their electronic structures. The third-order NLO properties of pure and transition metals (Cu, Co and Mn) doped ZnS NPs were measured by [Formula: see text]-scan technique. From these measurements, the pure and doped ZnS samples exhibit negative nonlinearity i.e., self-defocusing. The open aperture [Formula: see text]-scan measurement shows saturated absorption within the medium. The prepared pure and doped ZnS samples exhibit nonlinear refractive index of the order of 10[Formula: see text][Formula: see text](cm2/W), nonlinear absorption (NLA) coefficient of the order of 10[Formula: see text][Formula: see text]cm/W and nonlinear optical susceptibility of the order of 10[Formula: see text][Formula: see text]esu. The electronic structures of these ZnS NPs were investigated using near edge X-ray absorption fine structure (NEXAFS) measurements at the C K-, N K- and Co L[Formula: see text]-edges. The C K- and N K-edges XANES spectra reveal the appearance of several spectral features in the range 285–290[Formula: see text]eV and 390–430[Formula: see text]eV respectively. The Co L[Formula: see text]-edge NEXAFS spectrum exhibits multiplet absorption lines similar to those of Co[Formula: see text] ions coordinated in tetrahedral symmetry with four sulfur nearest neighbors. These results clearly demonstrate that divalent Co ions substitute Zn sites. From the Raman spectra, the appearance of multiple resonance Raman peaks indicates that the prepared ZnS samples have good optical quality.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3