OPTICAL NONLINEARITIES OF METAL-DIELECTRIC COMPOSITES

Author:

LEPESHKIN N. N.1,KIM W.1,SAFONOV V. P.1,ZHU J. G.1,ARMSTRONG R. L.1,WHITE C. W.1,ZUHR R. A.1,SHALAEV V. M.1

Affiliation:

1. Department of Physics, New Mexico State University, Las Cruces, NM 88003, USA

Abstract

Nonlinear optical properties of metal-dielectric composites, such as fractal colloid aggregates and clusters created by ion implantation, are studied. Strong fluctuations of local fields result in huge enhancements of optical nonlinearities in fractal colloid aggregates. The real and imaginary parts of the cubic susceptibility of silver colloid aggregates are measured. It is found that the coefficient of nonlinear absorption strongly depends on the laser wavelength and intensity. Optical limiting effect in fractal silver colloids is observed. Nondegenerate forward four-wave mixing technique is used to investigate the third-order nonlinear susceptibility for nanocomposite material with Au nanocrystals formed inside a SiO 2 glass matrix. The Au nanocrystals are formed by the ion implantation and annealing method that produces very high volume fraction of nanoparticles. The large value |χ(3)|=1.3×10-7 esu is measured. Two characteristic relaxation times, 5.3 ps and 0.66 ps, are estimated from the detuning curve of |χ(3)|, as the probe beam wavelength changes. A novel class of optical materials, microcavities doped with nanostructured fractal aggregates, is also studied. In our experiments, lasing at extremely low pump intensities, below 1 mW, and dramatically enhanced Raman scattering was observed in microcavity/fractal composites.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3