3D Catheter Shape Reconstruction Using Electromagnetic and Image Sensors

Author:

Tran Phuong Toan1,Chang Ping-Lin2,De Praetere Herbert3,Maes Julies4,Reynaerts Dominiek1,Sloten Jos Vander1,Stoyanov Danail2,Poorten Emmanuel Vander1

Affiliation:

1. Department of Mechanical Engineering, KU Leuven, BE-3001 Leuven, Belgium

2. Centre for Medical Image Computing, University College London, NW1 3EE London, United Kingdom

3. Department of Experimental Cardiac Surgery, University Hospital Leuven, BE-3000 Leuven, Belgium

4. Materialise NV, BE-3001 Leuven, Belgium

Abstract

In current practice, fluoroscopy remains the gold standard for guiding surgeons during endovascular catheterization. The poor visibility of anatomical structures and the absence of depth information make accurate catheter localization and manipulation a difficult task. Overexposure to radiation and use of risk-prone contrast agent also compromise surgeons’ and patients’ health. Alternative approaches using embedded electromagnetic (EM) sensors have been developed to overcome the limitations of fluoroscopy-based interventions. As only a finite number of sensors can be integrated within a catheter, methods that rely on such sensors require the use of interpolation schemes to recover the catheter shape. Since EM sensors are sensitive to external interferences, the outcome is not robust. This paper introduces a probabilistic framework that improves the catheter localization and reduces the dependency on fluoroscopy and contrast agents. Within this framework, the dense 2D information extracted from fluoroscopic images is combined with the discrete pose information of EM sensors to provide a reliable reconstruction of the full three-dimensional catheter shape. Validation in a physics-based simulation environment and in a real-world experimental setup provides promising results and indicates that the proposed framework allows reconstructing the 3D catheter shape with a median root-mean-square error of 3.7[Formula: see text]mm with an interquartile range of 0.3[Formula: see text]mm.

Funder

EU FP7

Publisher

World Scientific Pub Co Pte Lt

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3