Determining the Significant Kinematic Features for Characterizing Stress during Surgical Tasks Using Spatial Attention

Author:

Zheng Yi1ORCID,Leonard Grey2,Zeh Herbert2,Majewicz Fey Ann12

Affiliation:

1. Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA

2. Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, USA

Abstract

It has been shown that intraoperative stress can have a negative effect on surgeon surgical skills during laparoscopic procedures. For novice surgeons, stressful conditions can lead to significantly higher velocity, acceleration, and jerk of the surgical instrument tips, resulting in faster but less smooth movements. However, it is still not clear which of these kinematic features (velocity, acceleration, or jerk) is the best marker for identifying the normal and stressed conditions. Therefore, in order to find the most significant kinematic feature that is affected by intraoperative stress, we implemented a spatial attention-based Long Short-Term Memory (LSTM) classifier. In a prior IRB approved experiment, we collected data from medical students performing an extended peg transfer task who were randomized into a control group and a group performing the task under external psychological stresses. In our prior work, we obtained “representative” normal or stressed movements from this dataset using kinematic data as the input. In this study, a spatial attention mechanism is used to describe the contribution of each kinematic feature to the classification of normal/stressed movements. We tested our classifier under Leave-One-User-Out (LOUO) cross-validation, and the classifier reached an overall accuracy of 77.11% for classifying “representative” normal and stressed movements using kinematic features as the input. More importantly, we also studied the spatial attention extracted from the proposed classifier. Velocity and acceleration on both sides had significantly higher attention for classifying a normal movement ([Formula: see text]); Velocity ([Formula: see text]) and jerk ([Formula: see text]) on nondominant hand had significant higher attention for classifying a stressed movement, and it is worthy noting that the attention of jerk on nondominant hand side had the largest increment when moving from describing normal movements to stressed movements ([Formula: see text]). In general, we found that the jerk on nondominant hand side can be used for characterizing the stressed movements for novice surgeons more effectively.

Funder

National Science Foundation

National Institutes of Health

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,Human-Computer Interaction,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3