Blind Separation of Heart Sounds

Author:

Chen Lingguang1,Wu Sean F.1,Xu Yong2,Lyman William D.3,Kapur Gaurav3

Affiliation:

1. Department of Mechanical Engineering, Wayne State University, Detroit, MI 48202, USA

2. Department of Electric and Computer Engineering, Wayne State University, Detroit, MI 48202, USA

3. Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48201, USA

Abstract

This paper presents a theoretical foundation for the newly developed methodology that enables the prediction of blood pressures based on the heart sounds measured directly on the chest of a patient. The key to this methodology is the separation of heart sounds into first heart sound and second heart sound, from which components attributable to four heart valves, i.e.: mitral; tricuspid; aortic; and pulmonary valve-closure sounds are separated. Since human physiology and anatomy can vary among people and are unknown a priori, such separation is called blind source separation. Moreover, the sources locations, their surroundings and boundary conditions are unspecified. Consequently, it is not possible to obtain an exact separation of signals. To circumvent this difficulty, we extend the point source separation method in this paper to an inhomogeneous fluid medium, and further combine it with iteration schemes to search for approximate source locations and signal propagation speed. Once these are accomplished, the signals emitted from individual sources are separated by deconvoluting mixed signals with respect to the identified sources. Both numerical simulation example and experiment have demonstrated that this approach can provide satisfactory source separation results.

Funder

Technology Development Incubator

Children's Research Center of Michigan

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3