Uncertainty Quantification for Direct Aeroacoustic Simulations of Cavity Flows

Author:

Kuhn Thomas1,Dürrwächter Jakob2,Meyer Fabian3,Beck Andrea2,Rohde Christian3,Munz Claus-Dieter2

Affiliation:

1. University of Stuttgart, IAG, Stuttgart 70569, Germany

2. Institute for Aerodynamics and Gasdynamics, University of Stuttgart, Pfaffenwaldring 21, Stuttgart 70569, Germany

3. Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, Stuttgart 70569, Germany

Abstract

We investigate the influence of uncertain input parameters on the aeroacoustic feedback of cavity flows. The so-called Rossiter feedback requires a direct numerical computation of the acoustic noise, which solves hydrodynamics and acoustics simultaneously, in order to capture the interaction of acoustic waves and the hydrodynamics of the flow. Due to the large bandwidth of spatial and temporal scales, a high-order numerical scheme with low dissipation and dispersion error is necessary to preserve important small scale information. Therefore, the open-source CFD solver FLEXI, which is based on a high-order discontinuous Galerkin spectral element method, is used to perform the aforementioned direct simulations of an open cavity configuration with a laminar upstream boundary layer. To analyze the precision of the deterministic cavity simulation with respect to random input parameters, we establish a framework for uncertainty quantification (UQ). In particular, a nonintrusive spectral projection method with Legendre and Hermite polynomial basis functions is employed in order to treat uniform and normal probability distributions of the random input. The results indicate a strong, nonlinear dependency of the acoustic feedback mechanism on the investigated uncertain input parameters. An analysis of the stochastic results offers new insights into the noise generation process of open cavity flows and reveals the strength of the implemented UQ framework.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3