Affiliation:
1. Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA
Abstract
A modified Helmholtz equation least-square (HELS) method is developed to reconstruct vibroacoustic quantities on an arbitrarily shaped vibrating structure. Unlike the traditional nearfield acoustical holography that relies on the acoustic pressures collected on a hologram surface at a short stand-off distance to a target structure, this modified HELS method takes the partial normal surface velocities and partial acoustic pressures as the input data. The advantages of this approach include but not limited to: (1) The normal surface velocities that represent the nearfield effects are collected directly, which lead to a more accurate reconstruction of the normal surface velocity distribution; (2) The field acoustic pressures are also measured, which leads to a more accurate reconstruction of the acoustic pressure on the source surface as well as in the field; and (3) There is no need to measure the normal surface velocities over the entire surface, which makes this approach quite appealing in practice because most vibrating structures do not allow for measuring the normal surface velocities over the entire source surface as there are always obstacles or constrains around a target structure. Needless to say, regularization is necessary in reconstruction process since all inverse problems are mathematically ill-posed. To validate this approach, both numerical simulations and experimental results are presented. An optimal reconstruction scheme is developed via numerical simulations to achieve the most cost-effective reconstruction results for practical applications.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献