Affiliation:
1. Mathematics Department, University of Sfax, Faculty of Science of Sfax, Sfax, Tunisia
2. Military School of Aeronautical Specialities, Sfax, Tunisia
Abstract
We deal with existence and multiplicity results for the following nonhomogeneous and homogeneous equations, respectively: [Formula: see text] and [Formula: see text] where [Formula: see text] is the strongly degenerate operator, [Formula: see text] is allowed to be sign-changing, [Formula: see text], [Formula: see text] is a perturbation and the nonlinearity [Formula: see text] is a continuous function does not satisfy the Ambrosetti–Rabinowitz superquadratic condition ((AR) for short). First, via the mountain pass theorem and the Ekeland’s variational principle, existence of two different solutions for [Formula: see text] are obtained when [Formula: see text] satisfies superlinear growth condition. Moreover, we prove the existence of infinitely many solutions for [Formula: see text] if [Formula: see text] is odd in [Formula: see text] thanks an extension of Clark’s theorem near the origin. So, our main results considerably improve results appearing in the literature.
Publisher
World Scientific Pub Co Pte Lt
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献