Affiliation:
1. Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
Abstract
In this paper, radial basis functions (RBFs) method is proposed for numerical solution of the Liouville–Caputo time- and Riesz space-fractional Fokker–Planck equation with a nonlinear source term. The left-sided and the right-sided Riemann–Liouville fractional derivatives of RBFs are computed and utilized to approximate the spatial fractional derivatives of the unknown function. Also, the time-fractional derivative is discretized by the high order formulas introduced in [J. X. Cao, C. P. Li and Y. Q. Chen, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II), Fract. Calculus Appl. Anal. 18(3) (2015) 735–761]. In each time step, via a collocation method, the computations of fractional Fokker–Planck equation are reduced to a linear or nonlinear system of algebraic equations. Several numerical examples are included to demonstrate the applicability, accuracy and stability of the method. Some comparisons are made with the existing results.
Publisher
World Scientific Pub Co Pte Ltd
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献