Affiliation:
1. Institute of Mathematics and Computer Science, University of Latvia, Raiņa b. 29, 1459 Riga, Latvia
Abstract
A closure endomorphism of a Hilbert algebra [Formula: see text] is a mapping that is simultaneously an endomorphism of and a closure operator on [Formula: see text]. It is known that the set [Formula: see text] of all closure endomorphisms of [Formula: see text] is a distributive lattice where the meet of two elements is defined pointwise and their join is given by their composition. This lattice is shown in the paper to be isomorphic to the lattice of certain filters of [Formula: see text], anti-isomorphic to the lattice of certain closure retracts of [Formula: see text], and compactly generated. The set of compact elements of [Formula: see text] coincides with the adjoint semilattice of [Formula: see text]; conditions under which two Hilbert algebras have isomorphic adjoint semilattices (equivalently, minimal Brouwerian extensions) are discussed. Several consequences are drawn also for implication algebras.
Publisher
World Scientific Pub Co Pte Lt
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献