Stability analysis and optimization problem fractional of a predator–prey system with Holling II functional response

Author:

Bourega Abdeldjabar12ORCID

Affiliation:

1. Laboratoire de Mathématiques Fondamentales et, Appliquées d’Oran (LMFAO), Université Oran1. B.P. 1524 El Mnaouer, Oran, Algerie

2. Université de Laghouat, Algerie

Abstract

The Kolmogorov model has been applied to numerous organic and natural issues. We are especially inspired by one of its variations, that is, a Gauss-type hunter prey model that incorporates the allee impact and Holling type-II utilitarian reaction. Rather than utilizing exemplary first request differential conditions to figure the model, fragmentary request differential conditions are used. The presence and uniqueness of a nonnegative arrangement just as the conditions for the presence of balance focuses are given. We then, at that point, examine the neighborhood strength of the three sorts of harmony focuses by utilizing the linearization strategy. This paper manages an ideal control issue of a hunter prey framework with a Holling II useful reaction. The model viable joins an asylum ensuring [Formula: see text] of the prey and leaves ux of the prey accessible to the hunter, where [Formula: see text]. By using Pontryagin’s Most extreme Standard for partial, we concentrate on the ideal control issue viewing u as a control work.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3