Skew monoid rings with annihilator conditions

Author:

Safarisabet Shabanali1,Etezadi Mohammad2

Affiliation:

1. Department of Pure Mathematics, Faculty of Sciences, Islamic Azad University, Central Tehran Branch, Tehran, Iran

2. Department of Mathematics, Faculty of Sciences, Emam Ali University, Tehran, Iran

Abstract

One of the most active and important research areas in noncommutative algebra is the investigation of skew monoid rings. Given a ring [Formula: see text] and a monoid [Formula: see text], we study the structure of the set of zero divisors and nilpotent elements in skew monoid ring [Formula: see text]. In the process we introduce a nil analog of the [Formula: see text]-skew [Formula: see text]-McCoy ring defined by Alhevaz and Kiani in [McCoy property of skew Laurent polynomials and power series rings, J. Algebra Appl. 13(2) (2014), Article ID: 1350083, 23pp.] and introduce the concept of so-called [Formula: see text]-skew nil [Formula: see text]-McCoy ring, which is a common generalization of [Formula: see text]-skew [Formula: see text]-McCoy rings, nil-McCoy rings and McCoy rings relative to a monoid. It is done by considering the nil-McCoy condition on a skew monoid ring [Formula: see text] instead of the polynomial ring [Formula: see text]. We also obtain various necessary or sufficient conditions for a ring to be [Formula: see text]-skew nil [Formula: see text]-McCoy. Among other results, we prove that each regular [Formula: see text]-skew [Formula: see text]-McCoy ring [Formula: see text] is abelian (i.e. idempotents are central), where [Formula: see text] is any monoid with an element of infinite order and [Formula: see text] is a compatible monoid homomorphism. This answers, in a much more general setting, a question posed in [A. R. Nasr-Isfahani, On semiprime right Goldie McCoy rings, Comm. Algebra 42(4) (2014) 1565–1570], in the positive. Furthermore, we provide various examples and classify how the nil [Formula: see text]-McCoy rings behaves under various ring extensions.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3