Affiliation:
1. Department of Mathematics, Francisk Skorina Gomel State University, Sovetskaya str. 104, Gomel 246019, Belarus
Abstract
A subgroup H of a group G is said to be K-ℙ-subnormal inG [A. F. Vasilyev, T. I. Vasilyeva and V. N. Tyutyanov, On finite groups with almost all K-ℙ-subnormal Sylow subgroups, in Algebra and Combinatorics: Abstracts of Reports of the International Conference on Algebra and Combinatorics on Occasion the 60th Year Anniversary of A. A. Makhnev (Ekaterinburg, 2013), pp. 19–20] if there exists a chain of subgroups H = H0 ≤ H1 ≤ ⋯ ≤ Hn = G such that either Hi-1 is normal in Hi or |Hi : Hi-1| is a prime, for i = 1, …, n. In this paper, we describe finite groups in which every second maximal subgroup is K-ℙ-subnormal.
Publisher
World Scientific Pub Co Pte Lt
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献