MODULAR ABELIAN GROUP ALGEBRAS

Author:

Danchev Peter1

Affiliation:

1. University of Plovdiv, 24 Tzar Assen Street, 4000 Plovdiv, Bulgaria

Abstract

Suppose FG is the F-group algebra of an arbitrary multiplicative abelian group G with p-component of torsion Gp over a field F of char (F) = p ≠ 0. Our theorems state thus: The factor-group S(FG)/Gp of all normed p-units in FG modulo Gp is always totally projective, provided G is a coproduct of groups whose p-components are of countable length and F is perfect. Moreover, if G is a p-mixed coproduct of groups with torsion parts of countable length and FH ≅ FG as F-algebras, then there is a totally projective p-group T of length ≤ Ω such that H × T ≅ G × T. These are generalizations to results by Hill-Ullery (1997). As a consequence, if G is a p-splitting coproduct of groups each of which has p-component with length < Ω and FH ≅ FG are F-isomorphic, then H is p-splitting. This is an extension of a result of May (1989). Our applications are the following: Let G be p-mixed algebraically compact or p-mixed splitting with torsion-complete Gp or p-mixed of torsion-free rank one with torsion-complete Gp. Then the F-isomorphism FH ≅ FG for any group H implies H ≅ G. Moreover, letting G be a coproduct of torsion-complete p-groups or G be a coproduct of p-local algebraically compact groups, then [Formula: see text]-isomorphism [Formula: see text] for an arbitrary group H over the simple field [Formula: see text] of p-elements yields H ≅ G. These completely settle in a more general form a question raised by May (1979) for p-torsion groups and also strengthen results due to Beers-Richman-Walker (1983).

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3