L2-blowup estimates of the wave equation and its application to local energy decay

Author:

Ikehata Ryo1

Affiliation:

1. Department of Mathematics, Division of Educational Sciences, Graduate School of Humanities and Social Sciences, Hiroshima University, Higashi-Hiroshima 739-8524, Japan

Abstract

We consider the Cauchy problems in [Formula: see text] for the wave equation with a weighted [Formula: see text]-initial data. We derive sharp infinite time blowup estimates of the [Formula: see text]-norm of solutions in the case of [Formula: see text] and [Formula: see text]. Then, we apply it to the local energy decay estimates for [Formula: see text], which is not studied so completely when the [Formula: see text]th moment of the initial velocity does not vanish. The idea to derive them is strongly inspired from a technique used in [R. Ikehata, Asymptotic profiles for wave equations with strong damping, J. Differ. Equ. 257 (2014) 2159–2177; R. Ikehata and M. Onodera, Remarks on large time behavior of the [Formula: see text]-norm of solutions to strongly damped wave equations, Differ. Integral Equ. 30 (2017) 505–520].

Funder

Grant-in-Aid for Scientific Research

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Mathematics,Analysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal $$L^{2}$$-growth of the generalized Rosenau equation;Journal of Pseudo-Differential Operators and Applications;2024-08-26

2. <i>L</i><sup>2</sup>-Blowup Estimates of the Plate Equation;Funkcialaj Ekvacioj;2024-08-15

3. L2$L^{2}$‐growth property for the wave equation with a higher derivative term;Mathematische Nachrichten;2024-07-15

4. On the Cauchy problem for acoustic waves in hereditary fluids: Decay properties and inviscid limits;Mathematical Methods in the Applied Sciences;2024-05-27

5. Energy decay for wave equations with a potential and a localized damping;Nonlinear Differential Equations and Applications NoDEA;2024-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3