The one-sided lipschitz condition in the follow-the-leader approximation of scalar conservation laws

Author:

Francesco Marco Di1,Stivaletta Graziano1

Affiliation:

1. Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Via Vetoio 1, L’Aquila I-67100, Italy

Abstract

We consider the follow-the-leader particle approximation scheme for a [Formula: see text] scalar conservation law with non-negative compactly supported [Formula: see text] initial datum and with a [Formula: see text] concave flux, which is known to provide convergence towards the entropy solution [Formula: see text] to the corresponding Cauchy problem. We provide two novel contributions to this theory. First, we prove that the one-sided Lipschitz condition satisfied by the approximate density [Formula: see text] is a “discrete version of an entropy condition”; more precisely, under fairly general assumptions on [Formula: see text] (which imply concavity of [Formula: see text]) we prove that the continuum version [Formula: see text] of said condition allows to select a unique weak solution, despite [Formula: see text] is apparently weaker than the classical Oleinik–Hoff one-sided Lipschitz condition [Formula: see text]. Said result relies on an improved version of Hoff’s uniqueness. A byproduct of it is that the entropy condition is encoded in the particle scheme prior to the many-particle limit, which was never proven before. Second, we prove that in case [Formula: see text] the one-sided Lipschitz condition can be improved to a discrete version of the classical (and “sharp”) Oleinik–Hoff condition. In order to make the paper self-contained, we provide proofs (in some cases “alternative” ones) of all steps of the convergence of the particle scheme.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Mathematics,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3