Affiliation:
1. Mathematics Department, University of North Carolina, CB 3250, Phillips Hall, Chapel Hill, NC 27599, USA
Abstract
We prove energy estimates for exact solutions to a class of linear, weakly stable, first-order hyperbolic boundary problems with “large”, oscillatory, zeroth-order coefficients, that is, coefficients whose amplitude is large, [Formula: see text], compared to the wavelength of the oscillations, [Formula: see text]. The methods that have been used previously to prove useful energy estimates for weakly stable problems with oscillatory coefficients (e.g. simultaneous diagonalization of first-order and zeroth-order parts) all appear to fail in the presence of such large coefficients. We show that our estimates provide a way to “justify geometric optics”, that is, a way to decide whether or not approximate solutions, constructed for example by geometric optics, are close to the exact solutions on a time interval independent of [Formula: see text]. Systems of this general type arise in some classical problems of “strongly nonlinear geometric optics” coming from fluid mechanics. Special assumptions that we make here do not yet allow us to treat the latter problems, but we believe the present analysis will provide some guidance on how to attack more general cases.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Mathematics,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献