A class of germs arising from homogenization in traffic flow on junctions

Author:

Cardaliaguet Pierre1,Forcadel Nicolas2,Monneau Régis13

Affiliation:

1. CEREMADE, UMR CNRS 7534, Université Paris Dauphine-PSL, Place de Lattre de Tassigny, 75775 Paris Cedex 16, France

2. INSA Rouen Normandie, Normandie Univ, LMI UR 3226, F-76000 Rouen, France

3. CERMICS, Université Paris-Est, Ecole des Ponts, ParisTech, 6-8 Avenue Blaise Pascal, 77455, Marne-la-Vallée, Cedex 2, France

Abstract

We consider traffic flows described by conservation laws. We mainly study a 2:1 junction (with two incoming roads and one outgoing road). At the mesoscopic level, the priority law at the junction is given by traffic lights, which are periodic in time; the traffic can also be slowed down by periodic in time flux-limiters. Looking at long-time behavior and on large space scale, we intuitively expect an effective junction condition to emerge, thus deriving a macroscopic model from the mesoscopic one. At the limit of the rescaling, we show rigorous homogenization of the problem and identify the effective junction condition, which belongs to a general class of germs (in the terminology of [B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of [Formula: see text]-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal. 201 (2011) 27–86; U. S. Fjordholm, M. Musch and N. H. Risebro, Well-posedness and convergence of a finite volume method for conservation laws on networks, SIAM J. Numer. Anal. 60(2) (2022) 606–630; M. Musch, U. S. Fjordholm and N. H. Risebro, Well-posedness theory for nonlinear scalar conservation laws on networks, Netw. Heterog. Media 17 (2022) 101–128]). The proof of homogenization requires two steps: our first key result is the identification of this germ and of a characteristic subgerm which determines the whole germ. The second key result is the construction of a family of correctors whose values at infinity are related to each element of the characteristic subgerm. This construction is indeed explicit at the level of some mixed Hamilton–Jacobi equations for concave Hamiltonians (i.e. fluxes). The solutions are found in the spirit of representation formulas for optimal control problems.

Funder

l'Agence Nationale de la Recherche

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3