Slow motion for a hyperbolic variation of Allen–Cahn equation in one space dimension

Author:

Folino Raffaele1

Affiliation:

1. Department of Information Engineering, Computer Science and Mathematics, Università degli Studi dell’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy

Abstract

The aim of this paper is to prove that, for specific initial data [Formula: see text] and with homogeneous Neumann boundary conditions, the solution of the IBVP for a hyperbolic variation of Allen–Cahn equation on the interval [Formula: see text] shares the well-known dynamical metastability valid for the classical parabolic case. In particular, using the “energy approach” proposed by Bronsard and Kohn [On the slowness of phase boundary motion in one space dimension, Comm. Pure Appl. Math. 43 (1990) 983–997], if [Formula: see text] is the diffusion coefficient, we show that in a time scale of order [Formula: see text] nothing happens and the solution maintains the same number of transitions of its initial datum [Formula: see text]. The novelty consists mainly in the role of the initial velocity [Formula: see text], which may create or eliminate transitions in later times. Numerical experiments are also provided in the particular case of the Allen–Cahn equation with relaxation.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics,Analysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3