Riemann problems for a hyperbolic system of nonlinear conservation laws from the Liou–Steffen pressure system

Author:

Cheng Hongjun1,Yang Hanchun1

Affiliation:

1. School of Mathematics and Statistics, Yunnan University, Kunming 650091, P. R. China

Abstract

This paper is devoted to a hyperbolic system of nonlinear conservation laws, that is, the pressure system independent of density and energy from the Liou–Steffen flux-splitting scheme on the compressible Euler equations. First, the one-dimensional Riemann problem is solved with eight kinds of structures. Second, the two-dimensional Riemann problem is discussed; the solution reveals a variety of geometric structures; by the generalized characteristic analysis method and studying the pointwise interactions of waves, we construct 29 kinds of structures of solution consisting of shocks, rarefaction waves and contact discontinuities; the theoretical analysis is confirmed by numerical simulations.

Funder

NSF of China

NSF of Yunnan Province

the top young talent project of Yunnan high level talent training support program

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3