Machine Learning Techniques in Web Content Mining: A Comparative Analysis

Author:

Anami Basavaraj S.1,Wadawadagi Ramesh S.2,Pagi Veerappa B.2

Affiliation:

1. KLE Institute of Technology, HUBLI, India

2. Basaveshwar Engineering College, BAGALKOT, India

Abstract

With incessantly growing amount of information published over Web pages, the World Wide Web (WWW) has become prolific in the field of data mining research. The heterogeneous and semi-structured nature of Web data has made the process of automated discovery a challenging issue. Web Content Mining (WCM) essentially uses data mining techniques to effectively discover knowledge from Web page contents. The intent of this study is to provide a comparative analysis of Machine Learning (ML) techniques available in the literature for WCM. For analysis, the article focuses on issues such as representation techniques, learning methods, datasets used and performance of each method as a criterion. The survey observes that some of the traditional ML algorithms have been efficiently used to work on Web data. Finally, the paper concludes citing some promising issues for further research in this domain.

Publisher

World Scientific Pub Co Pte Lt

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Reference35 articles.

1. Classifying Web pages employing a probabilistic neural network

2. Ontology-Based Interpretation and Validation of Mined Knowledge

3. S. Chakrabarti, Mining the Web: Discovering Knowledge from Hypertext Data, ed. L. Homet (Morgan Kaufmann Publishers, San Francisco, 2002) pp. 45–75.

4. Web mining: Machine learning for web applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Web content topic modeling using LDA and HTML tags;PeerJ Computer Science;2023-07-11

2. Web Page Content Block Identification with Extended Block Properties;Applied Sciences;2023-05-05

3. Sentiment Analysis on Social Media;Research Anthology on Implementing Sentiment Analysis Across Multiple Disciplines;2022-06-10

4. Text structuring methods based on complex network: a systematic review;Scientometrics;2021-01-03

5. Cyber parental control: A bibliometric study;Children and Youth Services Review;2020-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3