A Hybrid Convolutional Bi-Directional Gated Recurrent Unit System for Spoken Languages of JK and Ladakhi

Author:

Thukroo Irshad Ahmad1,Bashir Rumaan1ORCID,Giri Kaiser J.1

Affiliation:

1. Department of Computer Science, Islamic University of Science & Technology, 1-University Avenue, Awantipora, Pulwama 192122, Jammu and Kashmir, India

Abstract

Spoken language identification is the process of recognising language in an audio segment and is the precursor for several technologies such as automatic call routing, language recognition, multilingual conversation, language parsing, and sentimental analysis. Language identification has become a challenging task for low-resource languages like Kashmiri and Ladakhi spoken in the UT’s of Jammu and Kashmir (JK) and Ladakh, India. This is mainly due to speaker variations like duration, moderator, and ambiance particularly when training and testing are done on different datasets whilst analysing the accuracy of language identification system in actual implementation, thus producing low accuracy results. In order to tackle this problem, we propose a hybrid convolutional bi-directional gated recurrent unit (Bi-GRU) utilising the effects of both static and dynamic behaviour of the audio signal in order to achieve better results as compared to state-of-the-art models. The audio signals are first converted into two-dimensional structures called Mel-spectrograms to represent the frequency distribution over time. To investigate the spectral behaviour of audio signals, we employ a convolutional neural network (CNN) that perceives Mel-spectrograms in multiple dimensions. The CNN-learned feature vector serves as input to the Bi-GRU that maintains the dynamic behaviour of the audio signal. Experiments are done on six spoken languages, i.e. Ladakhi, Kashmiri, Hindi, Urdu, English, and Dogri. The data corpora used for experimentation are the International Institute of Information Technology Hyderabad-Indian Language Speech Corpus (IIITH-ILSC) and the self-created data corpus for the Ladakhi language. The model is tested on two datasets, i.e. speaker-dependent and speaker-independent. Results show that when validating the efficiency of our proposed model on both speaker-dependent and speaker-independent datasets, we achieve optimal accuracies of 99% and 91%, respectively, thus achieving promising results in comparison to the state-of-the-art models available.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3