Sentiment Analysis Using Deep Learning Approaches on Multi-Domain Dataset in Telugu Language

Author:

Chattu Kannaiah1ORCID,Sumathi D.1ORCID

Affiliation:

1. School of Computer Science and Engineering, VIT-AP University Amaravati, India

Abstract

Recent advancements in Natural Language Processing (NLP) have made sentiment analysis an essential component of a variety of NLP jobs, including recommendation systems, question answering, and business intelligence products. While sentiment analysis research has, to put it mildly, been widely pursued in English, Telugu has barely ever attempted the task. The majority of research works concentrate on analysing the sentiments of Tweets, news, or reviews containing Hindi and English words. There is a growing interest among academics in studying how people express their thoughts and views in Indian languages like Bengali, Telugu, Malayalam, Tamil and so on. Due to a paucity of labelled datasets, microscopic investigation on Indian languages has been published to our knowledge. This work suggested a sentence-level sentiment analysis on multi-domain datasets that has been collected in Telugu. Deep learning models have been used in this work because it demonstrates the significant expertise in sentiment analysis and is widely regarded as the cutting-edge model in Telugu Sentiment Analysis. Our proposed work investigates a productive Bidirectional Long Short-Term Memory (BiLSTM) Network and Bidirectional GRU Network (BiGRU) for improving Telugu Sentiment Analysis by encapsulating contextual information from Telugu feature sequences using Forward-Backward encapsulation. Further, the model has been deployed by merging the domains so as to predict the accuracy and other performance metrics. The experimental test findings show that the deep learning models outperform when compared with the baseline traditional ML methods in four benchmark sentiment analysis datasets. There is evidence that the proposed sentiment analysis method has improved precision, recall, F1-score and accuracy in certain cases. The proposed model has achieved the F1-score of 86% for song datasets when compared with the other existing models.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3