A New Hybrid Multiclass Approach Based on KNN and SVM

Author:

Limam Hela12,Zouhair Amal2,Oueslati Wided23

Affiliation:

1. Institut Supérieur d’Informatique, Université de Tunis El Manar, 2 Rue Abou Raihane Bayrouni, 2080 l’Ariana, Tunisia

2. Laboratoire BestMod, Institut Supérieur de Gestion de Tunis, University of Tunis, 41 Rue de la Liberté, Cité Bouchoucha, Le Bardo, 2000 Tunis, Tunisia

3. Ecole Supérieure de Commerce de Tunis, University of Manouba, Campus Universitaire la Manouba, 2010 Manouba, Tunisia

Abstract

Support vector machine (SVM) is a machine learning method widely used in solving binary data classification problems due to its performance. Nevertheless, in practical problems of classification, there are often cases of the presence of more than two classes of objects in the original dataset. The paper considers a solution to the problem of SVM multiclass with the aim to increase the data classification quality based on a new way of hybridisation between SVM and [Formula: see text]-nearest neighbour (KNN) algorithms. The first phase of the approach is called the filtering phase. At this level, the feature space is split into two classes separated by a hyperplane. In the next step called review, we generate a second hyperplane, then we calculate the distance between each test pattern and the second hyperplane in the feature space using e.g. the KNN function. The result of the two phases is three classes instead of two produced by the conventional SVM. For evaluation purposes, dataset experiments are conducted on seven benchmark datasets that have high dimensionality and large size. Numerical experiments show that the 3SVM approach can improve not only the accuracy compared to other multiclass SVM approaches, but also the precision, recall, and [Formula: see text]-score.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3