Automated Dual-Channel Speech Enhancement Using Adaptive Coherence Function with Optimised Discrete Wavelet Transform

Author:

Tank Vanita Raj1,Mahajan Shrinivas Padmakar2

Affiliation:

1. School of Electronics and Communication, Dr. Vishwanath Karad, MIT World Peace University, Pune, Maharashtra, India

2. Electronics and Telecommunication, College of Engineering, Savitribai Phule Pune University, Pune, Maharashtra, India

Abstract

Voice quality enhancement is a significant method for any speech communication model. Speech Enhancement (SE) and noise reduction approaches can significantly improve the perceptual voice quality of a hands-free communication system and increase the recognition rates of automatic speech recognition systems. Speech communications in real-world cases require high-performance enhancement techniques for addressing the distortions, which can corrupt the intelligibility and quality of the speech signal. Recent portable devices generally incorporate several microphones that can be easily used for improving signal quality. This paper plans to present a novel dual-channel SE model using the coherence function and heuristic concepts. The adaptive coherence function relates to the dual-microphone SE approach suitable for smartphones with primary and reference microphones. With this improved signal, the enhancement is performed by optimising denoising using Discrete Wavelet Transform (DWT) by Adaptive wind speed-based Deer Hunting Optimization Algorithm (AWS-DHOA). The considered objective function depends on the quality measure called Perceptual Evaluation of Speech Quality (PESQ) score. From the results, the RMSE of the proposed model using AWS-DHOA is 39.8%, 45.5%, 53.8% and 45.5% minimised than GWO-CFD, WOA-CFD, CSA-CFD, and RDA-CFD, respectively, on considering the babble noise. Finally, the comparative analysis confirmed that the proposed method improves speech quality and intelligibility by comparing diverse algorithms when different noise types corrupt the speech.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3