A Comparison of Resampling Techniques for Medical Data Using Machine Learning

Author:

Alahmari Fahad1

Affiliation:

1. College of Computer Science, King Khalid University, Saudi Arabia

Abstract

Data imbalance with respect to the class labels has been recognised as a challenging problem for machine learning techniques as it has a direct impact on the classification model’s performance. In an imbalanced dataset, most of the instances belong to one class, while far fewer instances are associated with the remaining classes. Most of the machine learning algorithms tend to favour the majority class and ignore the minority classes leading to classification models being generated that cannot be generalised. This paper investigates the problem of class imbalance for a medical application related to autism spectrum disorder (ASD) screening to identify the ideal data resampling method that can stabilise classification performance. To achieve the aim, experimental analyses to measure the performance of different oversampling and under-sampling techniques have been conducted on a real imbalanced ASD dataset related to adults. The results produced by multiple classifiers on the considered datasets showed superiority in terms of specificity, sensitivity, and precision, among others, when adopting oversampling techniques in the pre-processing phase.

Publisher

World Scientific Pub Co Pte Lt

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3