Neuro-Fuzzy-Based Frame Pre-Emption Using Time-Sensitive Networking for Industrial Ethernet

Author:

Kannamma R.1,Umadevi K. S.2

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India

2. Vellore Institute of Technology, Vellore, India

Abstract

IEEE802.1 Time-Sensitive Networking (TSN) makes it conceivable to convey the data traffic of time as well as critical applications using Ethernet shared by different applications having diversified Quality of Service (QoS) requirements for both TSN and non-TSN. TSN assures a guaranteed data delivery with limited latency, low jitter, and amazingly low loss of data for time-critical traffic. By holding networking resources for basic traffic, and applying different queuing and traffic shaping strategies, TSN accomplishes zero congestion loss for basic time-critical traffic. In proposed system, backpropagation algorithm is used to train the training set and fuzzy inference system methodologies such as Mamdani fuzzy inference system which has fuzzy inputs and fuzzy outputs, Sugeno FIS which has fuzzy inputs and a crisp output and adaptive-network-based fuzzy inference system has obtained from the neural network and fuzzy logic. The proposed system uses neuro-fuzzy techniques to handle frame pre-emption and reduces the time taken for decision making. It presents a decision making process using the traffic class.

Publisher

World Scientific Pub Co Pte Lt

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3