A Novel Parameter-Light Subspace Clustering Technique Based on Single Linkage Method

Author:

Kelkar Bhagyashri A.1ORCID,Rodd Sunil F.2,Kulkarni Umakant P.3

Affiliation:

1. Department of CSE, Sanjay Ghodawat University, Atigre Kolhapur 416118, India

2. Department of CSE, Gogte Institute of Technology, Belagavi, Karnataka 590008, India

3. Department of CSE, SDMCET Dharwar, Karnataka 580002, India

Abstract

Subspace clustering is a challenging high-dimensional data mining task. There have been several approaches proposed in the literature to identify clusters in subspaces, however their performance and quality is highly affected by input parameters. A little research is done so far on identifying proper parameter values automatically. Other observed drawbacks are requirement of multiple database scans resulting into increased demand for computing resources and generation of many redundant clusters. Here, we propose a parameter light subspace clustering method for numerical data hereafter referred to as CLUSLINK. The algorithm is based on single linkage clustering method and works in bottom up, greedy fashion. The only input user has to provide is how coarse or fine the resulting clusters should be, and if not given, the algorithm operates with default values. The empirical results obtained over synthetic and real benchmark datasets show significant improvement in terms of accuracy and execution time.

Publisher

World Scientific Pub Co Pte Lt

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3