A Big Data Recommendation Engine Framework Based on Local Pattern Analytics Strategy for Mining Multi-Sourced Big Data

Author:

Venkatesan T.1,Saravanan K.2,Ramkumar T.3

Affiliation:

1. Department of Computer Science, PRIST University, Thanjavur, Tamilnadu, India

2. Faculty of Computer Science, PRIST University, Thanjavur, Tamilnadu, India

3. School of Information Technology & Engineering, VIT University, Vellore, Tamilnadu, India

Abstract

Organisations that perform business operations in a multi-sourced big data environment are in imperative need to discover meaningful patterns of interest from their diversified data sources. With the advent of big data technologies such as Hadoop and Spark, commodity hardwares play vital role in the task of data analytics and process the multi-sourced and multi-formatted big data in a reasonable cost and time. Though various data analytic techniques exist in the context of big data, recommendation system is more popular in web-based business applications to suggest suitable products, services, and items to potential customers. In this paper, we put forth a big data recommendation engine framework based on local pattern analytics strategy to explore user preferences and taste for both branch level and central level decisions. The framework encourages the practice of moving computing environment towards the data source location and avoids forceful integration of data. Further it assists decision makers to reap hidden preferences and taste of users from branch data sources for an effective customer campaign. The novelty of the framework has been evaluated in the benchmark dataset, MovieLens100k and results clearly confirm the advantages of the proposal.

Publisher

World Scientific Pub Co Pte Lt

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3