Explicating Mechanical and Electrical Knowledge for Design Phase of Green Building Projects

Author:

Pourzolfaghar Zohreh1,Ibrahim Rahinah2,Adam Nor Mariah3

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D. E., Malaysia

2. Department of Architecture, Faculty of Design and Architecture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D. E., Malaysia

3. Department of Mechanic, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D. E., Malaysia

Abstract

Construction projects usually encompass numerous disciplines, requiring the integration of knowledge from civil, mechanical, electrical and other engineering domains. Some researchers contend that the integration of construction knowledge and experience at the early design phase would improve the overall project performance. Domination of tacit knowledge during design phase of building projects is the major source of knowledge flow problems between involved professionals. Therefore, this study intends to explicate the required mechanical and electrical knowledge which has to be considered during the conceptual design phase of a green building project. To fulfil this goal, a case study has been conducted to specify the entity of the required mechanical and electrical knowledge. The primary method for the data collection here is observation. Furthermore, this study employs the triangulation method in order to validate the collected data. The results contain the required mechanical and electrical knowledge which has to be considered during the conceptual design phase of a green building project.

Publisher

World Scientific Pub Co Pte Lt

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3