Harnessing Attention-Based Graph Recurrent Neural Networks for Enhanced Conversational Flow Prediction via Conversational Graph Construction

Author:

Sujatha R.1ORCID,Nimala K.1ORCID

Affiliation:

1. Department of Networking and Communications, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamilnadu, India

Abstract

Conversational flow refers to the progression of a conversation, encompassing the arrangement of topics discussed and how responses are delivered. A smooth flow involves participants taking turns to speak and respond naturally and intuitively. Conversely, a more disjointed flow may entail prolonged pauses or difficulties establishing common ground. Numerous factors influence conversation flow, including the personalities of those involved, their familiarity with each other, and the contextual setting. A conversational graph pattern outlines how a conversation typically unfolds or the underlying structure it adheres to. It involves combining different sentence types, the sequential order of topics discussed, and the roles played by different individuals. Predicting subsequent sentences relies on predefined patterns, the context derived from prior conversation flow in the data, and the trained system. The accuracy of sentence predictions varies based on the probability of identifying sentences that fit the subsequent pattern. We employ the Graph Recurrent Neural Network with Attention (GRNNA) model to generate conversational graphs and perform next-sentence prediction. This model constructs a conversational graph using an adjacency matrix, node features (sentences), and edge features (semantic similarity between the sentences). The proposed approach leverages attention mechanisms, recurrent updates, and information aggregation from neighbouring nodes to predict the next node (sentence). The model achieves enhanced predictive capabilities by updating node representations through multiple iterations of message passing and recurrent updates. Experimental results using the conversation dataset demonstrate that the GRNNA model surpasses the Graph Neural Network (GNN) model in next-sentence prediction, achieving an impressive accuracy of 98.89%.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3