Affiliation:
1. Computer Engineering Department, Faculty of Engineering, Golestan University, Gorgan, Iran
Abstract
The cloud computing environment with a set of distributed computing resources is a suitable platform for the execution of large-scale applications. One of these applications is scientific workflow applications in which a large set of interrelated tasks are executed for a certain purpose. Scientific workflow scheduling is one of the main challenges in this area, which aims at the optimal assignment of tasks to computational resources. Given the heterogeneity of cloud computing resources, the scientific workflow scheduling is an NP-Complete problem that can be solved by heuristic methods. In this paper, an improved evolutionary algorithm called Scientific Workflow Scheduling Algorithm (SWSA) for scheduling scientific workflows in the cloud will be provided by ranking tasks and improving the initial population of tasks. The objective of this algorithm is to create a balance and an improvement in the parameters of the execution cost and workflow execution completion time. In this proposed approach, a heuristic algorithm is used to rank and generate the initial population, which increases the convergence rate. The experimental results show that SWSA is more efficient in terms of cost and execution time compared with other approaches.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Library and Information Sciences,Computer Networks and Communications,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Ensemble Data Security on Cloud Healthcare Systems;2023 4th International Conference on Smart Electronics and Communication (ICOSEC);2023-09-20