Neural Network-based Pest Detection with K-Means Segmentation: Impact of Improved Dragonfly Algorithm

Author:

Chodey Madhuri Devi1,Noorullah Shariff C2

Affiliation:

1. Electronics and Communication Engineering, Navodaya Institute of Technology, Affiliated to VTU, Raichur, Karnataka, India

2. Electronics and Communication Engineering, SECAB Institute of Engineering and Technology, Vijayapur, Karnataka, India

Abstract

Pest detection and identification of diseases in agricultural crops is essential to ensure good product since it is the major challenge in the field of agriculture. Therefore, effective measures should be taken to fight the infestation to minimise the use of pesticides. The techniques of image analysis are extensively applied to agricultural science that provides maximum protection to crops. This might obviously lead to better crop management and production. However, automatic pest detection with machine learning technology is still in the infant stage. Hence, the video processing-based pest detection framework is constructed in this work by following six major phases, viz. (a) Video Frame Acquisition, (b) Pre-processing, (c) Object Tracking, (d) Foreground and Background Segmentation, (e) Feature Extraction, and (f) Classification. Initially, the moving frames of videos are pre-processed, and the movement of the object is tracked with the aid of the foreground and background segmentation approach via K-Means clustering. From the segmented image, a new feature evaluation termed as Distributed Intensity-based LBP features (DI-LBP) along with edges and colour are extracted. Further, the features are subjected to a classification process, where an optimised Neural Network (NN) is used. As a novelty, the training of NN will be carried out using a new Dragonfly with New Levy Update (D-NU) algorithm via updating the weight. Finally, the performance of the proposed model is analysed over other conventional models with respect to certain performance measures for both video and image datasets.

Publisher

World Scientific Pub Co Pte Lt

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The application of FCM-based computer image segmentation technology in agricultural production;Service Oriented Computing and Applications;2024-09-05

2. Advancements in smart agriculture through innovative weed management using wavelet-based convolution neural network;Journal of High Speed Networks;2024-08-13

3. End-to-End Jute-Pest Detection By Explainable Lightweight CNN;2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT);2024-05-02

4. A computer image feature extraction algorithm based on distributed K-means algorithm;International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2023);2024-03-27

5. New trends in detection of harmful insects and pests in modern agriculture using artificial neural networks. a review;Frontiers in Plant Science;2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3