Affiliation:
1. Electronics and Communication Engineering, Navodaya Institute of Technology, Affiliated to VTU, Raichur, Karnataka, India
2. Electronics and Communication Engineering, SECAB Institute of Engineering and Technology, Vijayapur, Karnataka, India
Abstract
Pest detection and identification of diseases in agricultural crops is essential to ensure good product since it is the major challenge in the field of agriculture. Therefore, effective measures should be taken to fight the infestation to minimise the use of pesticides. The techniques of image analysis are extensively applied to agricultural science that provides maximum protection to crops. This might obviously lead to better crop management and production. However, automatic pest detection with machine learning technology is still in the infant stage. Hence, the video processing-based pest detection framework is constructed in this work by following six major phases, viz. (a) Video Frame Acquisition, (b) Pre-processing, (c) Object Tracking, (d) Foreground and Background Segmentation, (e) Feature Extraction, and (f) Classification. Initially, the moving frames of videos are pre-processed, and the movement of the object is tracked with the aid of the foreground and background segmentation approach via K-Means clustering. From the segmented image, a new feature evaluation termed as Distributed Intensity-based LBP features (DI-LBP) along with edges and colour are extracted. Further, the features are subjected to a classification process, where an optimised Neural Network (NN) is used. As a novelty, the training of NN will be carried out using a new Dragonfly with New Levy Update (D-NU) algorithm via updating the weight. Finally, the performance of the proposed model is analysed over other conventional models with respect to certain performance measures for both video and image datasets.
Publisher
World Scientific Pub Co Pte Lt
Subject
Library and Information Sciences,Computer Networks and Communications,Computer Science Applications
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献