Internet of Things (IoT) for MC-CDMA-Based Cognitive Radio Network (CRN) in 5G: Performance Results

Author:

Khan M. R. H.1,Hoque M. A.1,Rahman M. Saifur2

Affiliation:

1. Department of Electrical and Electronic Engineering, Islamic University of Technology, Dhaka, Bangladesh

2. Department of Electrical & Electronics Engineering, Bangladesh University of Engineering and Technology (BUET), Bangladesh

Abstract

Both the internet-connected devices, i.e. IoT and Cognitive Radio Network (CRN) are considered to be the future technologies for the fifth generation of cellular wireless standards (5G). On the one hand, Internet of Things (IoT) focuses primarily on how to allow general objects to see, hear, and smell their own physical environment and make them connected to share the observations. On the other hand, a CRN is based on a complex spectrum allocation system, and licenced primary users (PUs) or unlicenced secondary users (SUs) are allowed to share the spectrum, provided they do not cause significant interference. The IoTs are meaningless if IoT objects are not equipped with cognitive radio capability. In cognitive radio, it is important to control the transmission power of SUs so that the interference should not be harmful to the quality of service of PUs. In this paper, the authors addressed the effects of imperfect power control between primary users (PUs) and the secondary users (SUs) of an IoT-based CRN. The effect of the co-channel interference (CCI) and adjacent channel interferences (ACIs) occurring in CRN using MC-CDMA system is also analysed. A new expression of the signal-to-interference-noise ratio (SINR) for CRN-based MC-CDMA system over a Nakagami-[Formula: see text] fading channel with imperfect power control condition is derived and investigated. The performance of IoT-based CRN using MC-CDMA system over the frequency selective multipath fading channel is examined with varying the number of users, the SINR per bit, number of fading path and number of sub-carriers. From the simulation results, we have seen that the SINR performance is affected by these parameters. The result of the analysis will provide relevant information to design the physical layer protocol for high-speed IoT-based CRN system for 5G.

Publisher

World Scientific Pub Co Pte Lt

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3