Multi-Response Optimisation of Process Parameters in Pocket Milling Using Artificial Neural Networks and Genetic Algorithms

Author:

Rajyalakshmi M.12ORCID,Venkateswara Rao M.3

Affiliation:

1. Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh 522510, Andhra Pradesh, India

2. PVP Siddhartha Institute of Technology, Chalasani Nagar, Kanuru, Vijayawada, Andhra Pradesh 520007, India

3. Bapatla Engineering College, Bapatla, Andhra Pradesh, India

Abstract

In the plastic industry for mold making, pocket milling is applied. The surface finish of the mold affects the quality of the plastic product, especially for toys. This can be achieved by minimising the surface roughness of the mold. To get a good quality product with a better production rate, the selection of the best combination of parameters in pocket milling is necessary. Multi-response optimisation can be applied for selecting such parameters which are suited for fulfilling the objective. In this study, one of the toy mold designs is selected as a pocket profile on which, two tool trajectories, viz Follow Periphery (FP) and Zigzag (ZZ), are applied for generation of pocket by varying Speed (S), Feed (F) and Step Over (SO). Box–Behnken Response Surface Methodology is applied to find the experimental runs. Two conflicting objectives minimising Surface Roughness (SR) and maximising Material Removal Rate (MRR) are obtained by applying Artificial Neural Networks (ANN) and Multi-Objective Genetic Algorithm (MOGA). Conformational experiments were conducted for the random set of Pareto results obtained from MOGA for both the tool trajectories to validate the model. From the analysis, it is observed that the FP tool path strategy is well suited to generate the pocket to get minimum SR and maximum MRR as the error percentage between the predicted and test results observed is 0.8085% for SR and 0.9236% for MRR.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3