A Comprehensive Survey on Deep Learning Techniques for Digital Video Forensics

Author:

Vigneshwaran T.1ORCID,Velammal B. L.2ORCID

Affiliation:

1. Department of Computer Science and Engineering, School of Engineering and Technology, CHRIST (Deemed to be University), Bangalore Kengeri Campus, Karnataka 560074, India

2. Department of Computer Science and Engineering, College of Engineering Guindy, Anna University, Chennai 600025, India

Abstract

With the help of advancements in connected technologies, social media and networking have made a wide open platform to share information via audio, video, text, etc. Due to the invention of smartphones, video contents are being manipulated day-by-day. Videos contain sensitive or personal information which are forged for one’s own self pleasures or threatening for money. Video falsification identification plays a most prominent role in case of digital forensics. This paper aims to provide a comprehensive survey on various problems in video falsification, deep learning models utilised for detecting the forgery. This survey provides a deep understanding of various algorithms implemented by various authors and their advantages, limitations thereby providing an insight for future researchers.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3