Development of Novel Incremental Question Answering System Using Optimised Deep Belief Network

Author:

Therasa M.1,Mathivanan G.1

Affiliation:

1. School of Computing, Sathyabama Institute of Science and Technology, (Deemed to be University), Chennai 600119, Tamil Nadu, India

Abstract

Question answering system is a more eminent research area because of its vast usage in recent years, which can be modelled to solve the deep learning-related limitations. More number of research works have been presented in this question answering field, where most of the systems adopt deep learning as the major contribution. Question answering system focusses on satisfying the users in getting relevant answers regarding a certain question in natural language. This paper presents the incremental question answering system using optimised deep learning. The proposed model covers two-step feature extraction, feature dimension reduction, and deep learning-based classification. From the benchmark dataset collected from a public source, the initial process is to extract the features using word-to-vector. Further, Principle Component Analysis (PCA) is adopted for reducing the dimension of the feature vector. These dimension-reduced features are used for incremental question answering systems by the Optimised Deep Neural Network (O-DNN). Here, the testing weight of the DNN is updated by the Modified Deer Hunting Optimisation Algorithm (M-DHOA) for handling the incremental data. Various implementation details in the algorithms produce better results, which shows the superior performance of the proposed method over existing systems.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Library and Information Sciences,Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3