Photokilling of waterborne-resistant pathogenic bacteria using cobalt-doped zinc oxide doped on reduced graphene oxide nanoparticles

Author:

Khan Ameer Muhammad1,Pervez Laiba1,Celli Jonathan2,Khattak Mutiullah3,Ullah Maqdad3,Shah ZiaUllah4,Khan Muhammad Mustafa1ORCID,Nadeem Muhammad1,Faisal Sulaiman1,Nadhman Akhtar1ORCID

Affiliation:

1. Department of Biotechnology, Institute of Integrative Biosciences CECOS University, Hayatabad, Phase VI Peshawar, Pakistan

2. Department of Physics, University of Massachusetts, Boston, MA 02125, USA

3. Department of Microbiology, Institute of Pathology and Diagnostic Medicine, Khyber Medical University Hayatabad, Peshawar, KP, Pakistan

4. Department of Pharmacy, Institute of Integrative Biosciences CECOS University, Hayatabad, Phase VI, Peshawar, Pakistan

Abstract

This study is aimed at the chemical synthesis of light-activated cobalt-doped zinc oxide and its further doping on reduced graphene oxide (RGO) and assessment of its antibacterial activity on antibiotic-resistant waterborne pathogens including Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumonia, and Pseudomonas aeruginosa. The synthesized nanoparticles were characterized via UV–vis spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The minimal inhibitory concentration (MIC) of nanoparticles portrayed a significant killing of both Gram-positive and Gram-negative bacteria. The synthesized nanoparticles were further found as active killers of bacteria in drinking water. Further, these nanoparticles were found photothermally active alongside ROS generators. The photokilling activity makes them ideal replacement candidates for traditional water filters.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction to the Special Issue on Enhanced Photodynamic Therapy;Journal of Innovative Optical Health Sciences;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3